Альтернативная биохимия — ряд теорий и гипотез, объясняющих возможность существования форм жизни частично или полностью отличающихся биохимически от возникших на Земле.[1] Обсуждаемые в рамках гипотез отличия включают замену углерода в молекулах органических веществ на иные атомы, либо замена воды в качестве универсального растворителя другими жидкостями. Подобные явления нередко описываются в фантастической литерВозможность биохимически иной жизни, является общей темой научной фантастики, но она также рассматривается в научно-исследовательском контексте. Недавним примером такого обсуждения является отчет за 2007 год об ограничивающих условиях жизни, подготовленный комитетом в составе ученых при Национальном исследовательском совете Соединенных Штатов. Этот комитет под председательством Джона А. Бароса рассматривал «гипотетическую альтернативную химию жизни», включая ряд растворителей, которые могли бы стать альтернативой воде. В проекте под названием: «Пределы органической жизни в планетных системах» постулируется, что:
На сегодняшний день при поиске внеземной жизни руководствуются моделью жизни, основанной на жизни, которую мы наблюдаем на Земле. Некоторые особенности земной жизни привлекли особое внимание:
Земная жизнь использует воду в качестве растворителя;
Она построенa из клеток и использует метаболизм, который фокусируется на карбонильной группе ( C = O {\displaystyle {\ce {C=O}}} {\displaystyle {\ce {C=O}}});
Это термодинамически диссипативный процесс, использующий химико-энергетические градиенты;
Земная жизнь использует архитектуру с двумя биополимерами, которая использует нуклеиновые кислоты для выполнения большинства генетических функций и белки для выполнения большинства каталитических функций.[2]
Как следствие, большая часть планируемых миссий НАСА сосредоточена на местах, где возможно пребывание воды в жидком виде, и в ней делается акцент на поисках структур, подобных клеткам земных организмов. Этот подход был бы оправдан, учитывая отсутствие общего понимания того, как может выглядеть жизнь, имеющая происхождение, независимое от Земли. Однако лабораторные эксперименты дают основание ожидать, что жизнь может основываться и на молекулярных структурах, существенно отличающихся от земных.
Замена наиболее важных химических элементов
Акроним CHNOPS, расшифровывающийся как Carbon (углерод), Hydrogen (водород), Nitrogen (азот), Oxygen (кислород), Phosphorus (фосфор) и Sulfur (сера), представляет шесть наиболее важных химических элементов, чьи ковалентные комбинации составляют большую часть биологических молекул на Земле[3]. Сера используется в аминокислотах цистеин и метионин[4]. Фосфор — необходимый элемент в формировании фосфолипидов — подкласса липидов —, являющихся главным компонентом всех клеточных мембран, так как они могут формировать двойные липидные слои, сохраняющие ионы, протеины и другие молекулы там, где они нужны для выполнения функций клетки, и предотвращают от их проникновения в те зоны, где их быть не должно. Фосфатные группы также являются необходимым компонентом основы нуклеиновых кислот[5]. атуре.
Answers & Comments
Ответ:
Объяснение:
Альтернативная биохимия — ряд теорий и гипотез, объясняющих возможность существования форм жизни частично или полностью отличающихся биохимически от возникших на Земле.[1] Обсуждаемые в рамках гипотез отличия включают замену углерода в молекулах органических веществ на иные атомы, либо замена воды в качестве универсального растворителя другими жидкостями. Подобные явления нередко описываются в фантастической литерВозможность биохимически иной жизни, является общей темой научной фантастики, но она также рассматривается в научно-исследовательском контексте. Недавним примером такого обсуждения является отчет за 2007 год об ограничивающих условиях жизни, подготовленный комитетом в составе ученых при Национальном исследовательском совете Соединенных Штатов. Этот комитет под председательством Джона А. Бароса рассматривал «гипотетическую альтернативную химию жизни», включая ряд растворителей, которые могли бы стать альтернативой воде. В проекте под названием: «Пределы органической жизни в планетных системах» постулируется, что:
На сегодняшний день при поиске внеземной жизни руководствуются моделью жизни, основанной на жизни, которую мы наблюдаем на Земле. Некоторые особенности земной жизни привлекли особое внимание:
Земная жизнь использует воду в качестве растворителя;
Она построенa из клеток и использует метаболизм, который фокусируется на карбонильной группе ( C = O {\displaystyle {\ce {C=O}}} {\displaystyle {\ce {C=O}}});
Это термодинамически диссипативный процесс, использующий химико-энергетические градиенты;
Земная жизнь использует архитектуру с двумя биополимерами, которая использует нуклеиновые кислоты для выполнения большинства генетических функций и белки для выполнения большинства каталитических функций.[2]
Как следствие, большая часть планируемых миссий НАСА сосредоточена на местах, где возможно пребывание воды в жидком виде, и в ней делается акцент на поисках структур, подобных клеткам земных организмов. Этот подход был бы оправдан, учитывая отсутствие общего понимания того, как может выглядеть жизнь, имеющая происхождение, независимое от Земли. Однако лабораторные эксперименты дают основание ожидать, что жизнь может основываться и на молекулярных структурах, существенно отличающихся от земных.
Замена наиболее важных химических элементов
Акроним CHNOPS, расшифровывающийся как Carbon (углерод), Hydrogen (водород), Nitrogen (азот), Oxygen (кислород), Phosphorus (фосфор) и Sulfur (сера), представляет шесть наиболее важных химических элементов, чьи ковалентные комбинации составляют большую часть биологических молекул на Земле[3]. Сера используется в аминокислотах цистеин и метионин[4]. Фосфор — необходимый элемент в формировании фосфолипидов — подкласса липидов —, являющихся главным компонентом всех клеточных мембран, так как они могут формировать двойные липидные слои, сохраняющие ионы, протеины и другие молекулы там, где они нужны для выполнения функций клетки, и предотвращают от их проникновения в те зоны, где их быть не должно. Фосфатные группы также являются необходимым компонентом основы нуклеиновых кислот[5]. атуре.