Ответ:
import csv
import pymorphy2
import re
import psycopg2
conn = psycopg2.connect(dbname='energy', user='mao', password='daring', host='localhost')
cursor = conn.cursor()
morph = pymorphy2.MorphAnalyzer(lang='ru')
answer_id=[]
answer = dict()
cursor.execute('SELECT id, answer FROM app.chats_answer;')
records = cursor.fetchall()
for row in records:
answer[row[0]]=row[1]
questions=[]
cursor.execute('SELECT question, answer_id FROM app.chats_question;')
transform=0
if row[0]>"":
if row[1]>0:
phrases=row[0]
words=phrases.split(' ')
phrase=""
for word in words:
word = morph.parse(word)[0].normal_form
phrase = phrase + word + " "
if (len(phrase)>0):
questions.append(phrase.strip())
answer_id.append(row[1])
transform=transform+1
#print (questions)
#print (answer)
#print (answer_id)
cursor.close()
conn.close()
import sklearn
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
vectorizer_q = TfidfVectorizer()
vectorizer_q.fit(questions)
matrix_big_q = vectorizer_q.transform(questions)
print ("Размер матрицы: ")
print (matrix_big_q.shape)
if transform>200:
transform=200
print(transform)
svd_q = TruncatedSVD(n_components=transform)
svd_q.fit(matrix_big_q)
matrix_small_q = svd_q.transform(matrix_big_q)
print ("Коэффициент уменьшения матрицы: ")
print ( svd_q.explained_variance_ratio_.sum())
# тело программы k=5, temperature=10.0 можно подбирать
import numpy as np
from sklearn.neighbors import BallTree
from sklearn.base import BaseEstimator
def softmax(x):
#создание вероятностного распределения
proba = np.exp(-x)
return proba / sum(proba)
class NeighborSampler(BaseEstimator):
def __init__(self, k=5, temperature=10.0):
self.k=k
self.temperature = temperature
def fit(self, X, y):
self.tree_ = BallTree(X)
self.y_ = np.array(y)
def predict(self, X, random_state=None):
distances, indices = self.tree_.query(X, return_distance=True, k=self.k)
result = []
for distance, index in zip(distances, indices):
result.append(np.random.choice(index, p=softmax(distance * self.temperature)))
return self.y_[result]
from sklearn.pipeline import make_pipeline
ns_q = NeighborSampler()
ns_q.fit(matrix_small_q, answer_id)
pipe_q = make_pipeline(vectorizer_q, svd_q, ns_q)
import telebot
telebot.apihelper.ENABLE_MIDDLEWARE = True
bot = telebot.TeleBot("299999999:sdfgnreognrtgortgmrtgmrtgm")
@bot.message_handler(commands=['start'])
def start_message(message):
bot.send_message(message.from_user.id, " Здравствуйте. Я виртуальный помощник Mao?")
@bot.message_handler(func=lambda message: True)
def get_text_messages(message):
request=message.text
words= re.split('\W',request)
reply_id = int(pipe_q.predict([phrase.strip()]))
bot.send_message(message.from_user.id, answer[reply_id])
print("Запрос:", request, " \n\tНормализованный: ", phrase, " \n\t\tОтвет :", answer[reply_id])
bot.infinity_polling(none_stop=True, interval=1)
print("Пишите ваш вопрос, слова exit или выход для выхода")
request=""
while request not in ['exit', 'выход']:
request=input()
print (answer[reply_id])
Объяснение:
чат бот для телеграмма
Copyright © 2024 SCHOLAR.TIPS - All rights reserved.
Answers & Comments
Ответ:
import csv
import pymorphy2
import re
import psycopg2
conn = psycopg2.connect(dbname='energy', user='mao', password='daring', host='localhost')
cursor = conn.cursor()
morph = pymorphy2.MorphAnalyzer(lang='ru')
answer_id=[]
answer = dict()
cursor.execute('SELECT id, answer FROM app.chats_answer;')
records = cursor.fetchall()
for row in records:
answer[row[0]]=row[1]
questions=[]
cursor.execute('SELECT question, answer_id FROM app.chats_question;')
records = cursor.fetchall()
transform=0
for row in records:
if row[0]>"":
if row[1]>0:
phrases=row[0]
words=phrases.split(' ')
phrase=""
for word in words:
word = morph.parse(word)[0].normal_form
phrase = phrase + word + " "
if (len(phrase)>0):
questions.append(phrase.strip())
answer_id.append(row[1])
transform=transform+1
#print (questions)
#print (answer)
#print (answer_id)
cursor.close()
conn.close()
import sklearn
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
vectorizer_q = TfidfVectorizer()
vectorizer_q.fit(questions)
matrix_big_q = vectorizer_q.transform(questions)
print ("Размер матрицы: ")
print (matrix_big_q.shape)
if transform>200:
transform=200
print(transform)
svd_q = TruncatedSVD(n_components=transform)
svd_q.fit(matrix_big_q)
matrix_small_q = svd_q.transform(matrix_big_q)
print ("Коэффициент уменьшения матрицы: ")
print ( svd_q.explained_variance_ratio_.sum())
# тело программы k=5, temperature=10.0 можно подбирать
import numpy as np
from sklearn.neighbors import BallTree
from sklearn.base import BaseEstimator
def softmax(x):
#создание вероятностного распределения
proba = np.exp(-x)
return proba / sum(proba)
class NeighborSampler(BaseEstimator):
def __init__(self, k=5, temperature=10.0):
self.k=k
self.temperature = temperature
def fit(self, X, y):
self.tree_ = BallTree(X)
self.y_ = np.array(y)
def predict(self, X, random_state=None):
distances, indices = self.tree_.query(X, return_distance=True, k=self.k)
result = []
for distance, index in zip(distances, indices):
result.append(np.random.choice(index, p=softmax(distance * self.temperature)))
return self.y_[result]
from sklearn.pipeline import make_pipeline
ns_q = NeighborSampler()
ns_q.fit(matrix_small_q, answer_id)
pipe_q = make_pipeline(vectorizer_q, svd_q, ns_q)
import re
import telebot
telebot.apihelper.ENABLE_MIDDLEWARE = True
bot = telebot.TeleBot("299999999:sdfgnreognrtgortgmrtgmrtgm")
@bot.message_handler(commands=['start'])
def start_message(message):
bot.send_message(message.from_user.id, " Здравствуйте. Я виртуальный помощник Mao?")
@bot.message_handler(func=lambda message: True)
def get_text_messages(message):
request=message.text
words= re.split('\W',request)
phrase=""
for word in words:
word = morph.parse(word)[0].normal_form
phrase = phrase + word + " "
reply_id = int(pipe_q.predict([phrase.strip()]))
bot.send_message(message.from_user.id, answer[reply_id])
print("Запрос:", request, " \n\tНормализованный: ", phrase, " \n\t\tОтвет :", answer[reply_id])
bot.infinity_polling(none_stop=True, interval=1)
print("Пишите ваш вопрос, слова exit или выход для выхода")
request=""
while request not in ['exit', 'выход']:
request=input()
words= re.split('\W',request)
phrase=""
for word in words:
word = morph.parse(word)[0].normal_form
phrase = phrase + word + " "
reply_id = int(pipe_q.predict([phrase.strip()]))
print (answer[reply_id])
Объяснение:
чат бот для телеграмма