Ответ:
а) [tex]\boldsymbol{\boxed{\lim_{x \to 0} \dfrac{\sin^{2} x}{1 - \cos 4x} = \frac{1}{8} }}[/tex]
б) [tex]\boldsymbol{\boxed{ \lim_{x \to -4} (x + 5)^{\dfrac{3}{x + 4} } = e^{3}}}[/tex]
в) [tex]\boldsymbol{\boxed{ \lim_{x \to 0} \dfrac{1 -\cos^{3} x}{x \sin 3x} = \frac{1}{2} }}[/tex]
г) [tex]\boldsymbol{\boxed{\lim_{x \to \infty} \bigg(\frac{x + 6}{x + 2} \bigg)^{3x - 6} = e^{12} }}[/tex]
Примечание:
По теореме:
[tex]\boxed{ \lim_{x \to a} u(x)^{v(x)} = \bigg[1^{\infty} \bigg ] = \bigg e^{\displaystyle \lim_{x \to a} (v(x)(u(x) - 1)) } }[/tex]
Второй замечательный предел:
[tex]\boxed{ \lim_{x \to \infty} \bigg(1 + \frac{1}{x} \bigg)^{x} = e}[/tex]
По таблице производных:
[tex]\boxed{(x^{n})' = nx^{n - 1}}[/tex]
[tex]\boxed{(\sin x)' = \cos x}[/tex]
[tex]\boxed{(\cos x)' = -\sin x }[/tex]
[tex]\boxed{C' = 0}[/tex], где [tex]C \in \mathbb R[/tex]
Правила дифференцирования:
[tex](f \pm g)' = f' \pm g'[/tex]
[tex](fg)' = f'g + fg'[/tex]
[tex]\bigg(\dfrac{f}{g} \bigg)' = \dfrac{f'g - fg'}{g^{2}}[/tex]
[tex]f(g) = g'f'(g)[/tex]
[tex](kf)' = k(f')[/tex], где [tex]k \in \mathbb R[/tex]
[tex]f,g \ -[/tex] функции одной переменной
Пошаговое объяснение:
а)
[tex]\displaystyle \lim_{x \to 0} \dfrac{\sin^{2} x}{1 - \cos 4x} = \bigg [ \frac{0}{0} \bigg ] = \lim_{x \to 0} \dfrac{(\sin^{2} x)'}{(1 - \cos 4x)'} = \lim_{x \to 0} \dfrac{2 \sin x \cos x}{4 \sin 4x} =[/tex]
[tex]\displaystyle = \lim_{x \to 0} \dfrac{\sin 2x}{4 \cdot 2\sin 2x \cos 2x} =\lim_{x \to 0} \dfrac{1}{8 \cos 2x} = \dfrac{1}{8 \cdot \cos (2 \cdot 0)} = \dfrac{1}{8 \cdot \cos 0}= \dfrac{1}{8 \cdot 1} = \frac{1}{8}[/tex]
б)
[tex]\displaystyle \lim_{x \to -4} (x + 5)^{\dfrac{3}{x + 4} } = \bigg[1^{\infty} \bigg ] = \Bigg e^{\displaystyle \lim_{x \to -4} \bigg( \dfrac{3}{x + 4}(x + 5 - 1) \bigg ) } = \Bigg e^{\displaystyle \lim_{x \to -4} \bigg( \dfrac{3(x + 4)}{(x + 4)} \bigg ) } =[/tex]
[tex]=\bigg e^{\displaystyle \lim_{x \to -4} 3 } = e^{3}[/tex]
в)
[tex]\displaystyle \lim_{x \to 0} \dfrac{1 -\cos^{3} x}{x \sin 3x} = \bigg [ \frac{0}{0} \bigg ] = \lim_{x \to 0} \dfrac{(1 -\cos^{3} x)'}{(x \sin 3x)'} = \lim_{x \to 0} \dfrac{3\sin x\cos^{2} x}{(x)'\sin 3x + x(\sin 3x)'} =[/tex]
[tex]\displaystyle = \lim_{x \to 0} \dfrac{3\sin x\cos^{2} x}{\sin 3x + 3x \cos 3x} = \bigg [ \frac{0}{0} \bigg ] = \lim_{x \to 0} \dfrac{(3\sin x\cos^{2} x)'}{(\sin 3x + 3x \cos 3x)'}=[/tex]
[tex]\displaystyle = 3 \lim_{x \to 0} \dfrac{(\sin x)'\cos^{2} x + \sin x(\cos^{2} x)' }{(\sin 3x)' + (3x \cos 3x)'}= 3 \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{(3x)'\cos 3x + ((3x)' \cos 3x + 3x(\cos 3x)')}=[/tex]
[tex]\displaystyle =3 \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{3\cos 3x + (3 \cos 3x - (3x)'3x\sin 3x)}= 3 \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{3\cos 3x+ (3 \cos 3x - 9x\sin 3x)}=[/tex]
[tex]\displaystyle =3 \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{3\cos 3x + 3 \cos 3x - 9x\sin 3x}= 3 \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{6\cos 3x- 9x\sin 3x}=[/tex]
[tex]\displaystyle= \frac{3}{3} \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{2\cos 3x- 3x\sin 3x}= \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{2\cos 3x- 3x\sin 3x}=[/tex]
[tex]= \dfrac{\cos^{3} 0 - 2\sin^{2} 0\cos 0 }{2\cos (3\cdot 0) - 3 \cdot 0\sin (3 \cdot 0)}=\dfrac{1 - 0}{2 \cdot 1 - 0} = \dfrac{1}{2}[/tex]
г)
[tex]\displaystyle \lim_{x \to \infty} \bigg(\frac{x + 6}{x + 2} \bigg)^{3x - 6} = \lim_{x \to \infty} \frac{\bigg(\dfrac{x + 6}{x + 2} \bigg)^{3x} }{\bigg(\dfrac{x + 6}{x + 2} \bigg)^{6}} = \lim_{x \to \infty} \frac{ \Bigg( \bigg(\dfrac{x + 4 + 2}{x + 2} \bigg)^{x} \Bigg)^{3} }{\bigg(\dfrac{x + 2 + 4}{x + 2} \bigg)^{6}} =[/tex]
[tex]\displaystyle = \frac{ \lim_{x \to \infty} \Bigg( \dfrac{x + 2 }{x + 2} + \dfrac{ 4}{x + 2} \bigg)^{x} \Bigg)^{3} }{ \lim_{x \to \infty}\bigg(\dfrac{x + 2 }{x + 2} + \dfrac{ 4}{x + 2} \bigg)^{6}} = \frac{ \lim_{x \to \infty} \Bigg( 1 + \dfrac{1}{0,25(x + 2)} \bigg)^{x} \Bigg)^{3} }{ \lim_{x \to \infty}\bigg(1 + \dfrac{4}{x + 2} \bigg)^{6}} =[/tex]
[tex]\displaystyle = \frac{ \lim_{x \to \infty} \Bigg( 1 + \dfrac{1}{0,25x + 0,5} \bigg)^{x} \Bigg)^{3} }{1} = \lim_{x \to \infty} \Bigg( \Bigg( 1 + \dfrac{1}{0,25x + 0,5} \bigg)^{0,25x + 0,5 - 0,5} \Bigg)^{4}\Bigg)^{3}=[/tex]
[tex]\displaystyle = \Bigg( \lim_{x \to \infty} \Bigg( 1 + \dfrac{1}{0,25x + 0,5} \bigg)^{0,25x + 0,5 - 0,5} \Bigg)^{12}=[/tex]
[tex]\displaystyle = \frac{ \Bigg(\displaystyle\lim_{x \to \infty} \Bigg( 1 + \dfrac{1}{0,25x + 0,5} \bigg)^{0,25x + 0,5 }\Bigg)^{12}}{\Bigg(\displaystyle \lim_{x \to \infty} \Bigg( 1 + \dfrac{1}{0,25x + 0,5} \bigg)^{0,5 }\Bigg)^{12}} = \dfrac{e^{12}}{1} = e^{12}[/tex]
Copyright © 2025 SCHOLAR.TIPS - All rights reserved.
Answers & Comments
Ответ:
а) [tex]\boldsymbol{\boxed{\lim_{x \to 0} \dfrac{\sin^{2} x}{1 - \cos 4x} = \frac{1}{8} }}[/tex]
б) [tex]\boldsymbol{\boxed{ \lim_{x \to -4} (x + 5)^{\dfrac{3}{x + 4} } = e^{3}}}[/tex]
в) [tex]\boldsymbol{\boxed{ \lim_{x \to 0} \dfrac{1 -\cos^{3} x}{x \sin 3x} = \frac{1}{2} }}[/tex]
г) [tex]\boldsymbol{\boxed{\lim_{x \to \infty} \bigg(\frac{x + 6}{x + 2} \bigg)^{3x - 6} = e^{12} }}[/tex]
Примечание:
По теореме:
[tex]\boxed{ \lim_{x \to a} u(x)^{v(x)} = \bigg[1^{\infty} \bigg ] = \bigg e^{\displaystyle \lim_{x \to a} (v(x)(u(x) - 1)) } }[/tex]
Второй замечательный предел:
[tex]\boxed{ \lim_{x \to \infty} \bigg(1 + \frac{1}{x} \bigg)^{x} = e}[/tex]
По таблице производных:
[tex]\boxed{(x^{n})' = nx^{n - 1}}[/tex]
[tex]\boxed{(\sin x)' = \cos x}[/tex]
[tex]\boxed{(\cos x)' = -\sin x }[/tex]
[tex]\boxed{C' = 0}[/tex], где [tex]C \in \mathbb R[/tex]
Правила дифференцирования:
[tex](f \pm g)' = f' \pm g'[/tex]
[tex](fg)' = f'g + fg'[/tex]
[tex]\bigg(\dfrac{f}{g} \bigg)' = \dfrac{f'g - fg'}{g^{2}}[/tex]
[tex]f(g) = g'f'(g)[/tex]
[tex](kf)' = k(f')[/tex], где [tex]k \in \mathbb R[/tex]
[tex]f,g \ -[/tex] функции одной переменной
Пошаговое объяснение:
а)
[tex]\displaystyle \lim_{x \to 0} \dfrac{\sin^{2} x}{1 - \cos 4x} = \bigg [ \frac{0}{0} \bigg ] = \lim_{x \to 0} \dfrac{(\sin^{2} x)'}{(1 - \cos 4x)'} = \lim_{x \to 0} \dfrac{2 \sin x \cos x}{4 \sin 4x} =[/tex]
[tex]\displaystyle = \lim_{x \to 0} \dfrac{\sin 2x}{4 \cdot 2\sin 2x \cos 2x} =\lim_{x \to 0} \dfrac{1}{8 \cos 2x} = \dfrac{1}{8 \cdot \cos (2 \cdot 0)} = \dfrac{1}{8 \cdot \cos 0}= \dfrac{1}{8 \cdot 1} = \frac{1}{8}[/tex]
б)
[tex]\displaystyle \lim_{x \to -4} (x + 5)^{\dfrac{3}{x + 4} } = \bigg[1^{\infty} \bigg ] = \Bigg e^{\displaystyle \lim_{x \to -4} \bigg( \dfrac{3}{x + 4}(x + 5 - 1) \bigg ) } = \Bigg e^{\displaystyle \lim_{x \to -4} \bigg( \dfrac{3(x + 4)}{(x + 4)} \bigg ) } =[/tex]
[tex]=\bigg e^{\displaystyle \lim_{x \to -4} 3 } = e^{3}[/tex]
в)
[tex]\displaystyle \lim_{x \to 0} \dfrac{1 -\cos^{3} x}{x \sin 3x} = \bigg [ \frac{0}{0} \bigg ] = \lim_{x \to 0} \dfrac{(1 -\cos^{3} x)'}{(x \sin 3x)'} = \lim_{x \to 0} \dfrac{3\sin x\cos^{2} x}{(x)'\sin 3x + x(\sin 3x)'} =[/tex]
[tex]\displaystyle = \lim_{x \to 0} \dfrac{3\sin x\cos^{2} x}{\sin 3x + 3x \cos 3x} = \bigg [ \frac{0}{0} \bigg ] = \lim_{x \to 0} \dfrac{(3\sin x\cos^{2} x)'}{(\sin 3x + 3x \cos 3x)'}=[/tex]
[tex]\displaystyle = 3 \lim_{x \to 0} \dfrac{(\sin x)'\cos^{2} x + \sin x(\cos^{2} x)' }{(\sin 3x)' + (3x \cos 3x)'}= 3 \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{(3x)'\cos 3x + ((3x)' \cos 3x + 3x(\cos 3x)')}=[/tex]
[tex]\displaystyle =3 \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{3\cos 3x + (3 \cos 3x - (3x)'3x\sin 3x)}= 3 \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{3\cos 3x+ (3 \cos 3x - 9x\sin 3x)}=[/tex]
[tex]\displaystyle =3 \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{3\cos 3x + 3 \cos 3x - 9x\sin 3x}= 3 \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{6\cos 3x- 9x\sin 3x}=[/tex]
[tex]\displaystyle= \frac{3}{3} \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{2\cos 3x- 3x\sin 3x}= \lim_{x \to 0} \dfrac{\cos^{3} x - 2\sin^{2} x\cos x }{2\cos 3x- 3x\sin 3x}=[/tex]
[tex]= \dfrac{\cos^{3} 0 - 2\sin^{2} 0\cos 0 }{2\cos (3\cdot 0) - 3 \cdot 0\sin (3 \cdot 0)}=\dfrac{1 - 0}{2 \cdot 1 - 0} = \dfrac{1}{2}[/tex]
г)
[tex]\displaystyle \lim_{x \to \infty} \bigg(\frac{x + 6}{x + 2} \bigg)^{3x - 6} = \lim_{x \to \infty} \frac{\bigg(\dfrac{x + 6}{x + 2} \bigg)^{3x} }{\bigg(\dfrac{x + 6}{x + 2} \bigg)^{6}} = \lim_{x \to \infty} \frac{ \Bigg( \bigg(\dfrac{x + 4 + 2}{x + 2} \bigg)^{x} \Bigg)^{3} }{\bigg(\dfrac{x + 2 + 4}{x + 2} \bigg)^{6}} =[/tex]
[tex]\displaystyle = \frac{ \lim_{x \to \infty} \Bigg( \dfrac{x + 2 }{x + 2} + \dfrac{ 4}{x + 2} \bigg)^{x} \Bigg)^{3} }{ \lim_{x \to \infty}\bigg(\dfrac{x + 2 }{x + 2} + \dfrac{ 4}{x + 2} \bigg)^{6}} = \frac{ \lim_{x \to \infty} \Bigg( 1 + \dfrac{1}{0,25(x + 2)} \bigg)^{x} \Bigg)^{3} }{ \lim_{x \to \infty}\bigg(1 + \dfrac{4}{x + 2} \bigg)^{6}} =[/tex]
[tex]\displaystyle = \frac{ \lim_{x \to \infty} \Bigg( 1 + \dfrac{1}{0,25x + 0,5} \bigg)^{x} \Bigg)^{3} }{1} = \lim_{x \to \infty} \Bigg( \Bigg( 1 + \dfrac{1}{0,25x + 0,5} \bigg)^{0,25x + 0,5 - 0,5} \Bigg)^{4}\Bigg)^{3}=[/tex]
[tex]\displaystyle = \Bigg( \lim_{x \to \infty} \Bigg( 1 + \dfrac{1}{0,25x + 0,5} \bigg)^{0,25x + 0,5 - 0,5} \Bigg)^{12}=[/tex]
[tex]\displaystyle = \frac{ \Bigg(\displaystyle\lim_{x \to \infty} \Bigg( 1 + \dfrac{1}{0,25x + 0,5} \bigg)^{0,25x + 0,5 }\Bigg)^{12}}{\Bigg(\displaystyle \lim_{x \to \infty} \Bigg( 1 + \dfrac{1}{0,25x + 0,5} \bigg)^{0,5 }\Bigg)^{12}} = \dfrac{e^{12}}{1} = e^{12}[/tex]